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ANALYSIS OF THE THEORY O F  HIGH-ENERGY ION TRANSPORT 

John W. Wilson 
Langley Research Center 

SUMMARY 

In the operation of commercial high-altitude aircraft  and manned spacecraft, expo- 
sure to the heavy-ion radiations of space must be considered. There is a need, therefore, 
to understand the interaction of these radiations with the structures and shielding mate- 
rials of these transport vehicles. The development of analytical methods to study the 
transport properties of high-energy ions in materials is the topic of the present report. 

Procedures for the approximation of the transport of high-energy ions are discussed 
on the basis of available data on ion nuclear reactions. A straightahead approximation 
appears appropriate for  space applications. The assumption that the secondary-ion- 
fragment velocity is equal to that of the fragmenting nucleus is found to be inferior to 
straightahead theory but may be of sufficient accuracy if the primary ions display a broad 
energy spectrum. An iterative scheme for  the solution of the inhomogeneous integral 
transport equations holds promise for  practical calculation. A model calculation shows 
that multiply charged ion fragments (atomic number greater than 3) are able to penetrate 
to 'greater depths in comparison with the free path of a primary heavy ion (atomic number 
approximately equal to 25). 

INTRODUCTION 

The prospect of extensive space operations in the e r a  of the Space Transportation 
System, of ever increasing altitude range of commercial aircraft  operations, and of 
recent development of high-energy heavy-ion accelerators (especially in the context of 
radiotherapy) accentuates the need for a theoretical understanding of the interaction of 
energetic heavy ions with extended matter. The main limits on such developments in the 
past have been a result of the scarcity of information on the nuclear reactions induced by 
heavy-ion collisions (ref. 1). With the advent of the acceleration of heavy ions to relati- 
vistic energies by particle accelerators (refs. 2 and 3), needed experimental data will be 
forthcoming and the further development of heavy-ion transport theory now seems appro- 
priate. In addition, progress in heavy-ion reaction theory is likewise being made (refs. 4 
to 10); many of the transport parameters may be accurately estimated and implications of 
heavy-ion dynamics on the transport theory can now be investigated. 



It is considered that the simplest approach to studying high-energy ion transport 
would be to implement the Monte Carlo method. However, as a result  of the large num- 
ber of possible outcomes of heavy-ion nuclear reactions, it is felt that inordinately large 
samples will be required to adequately represent even the more important quantities of 
the transport process. For this reason, the development of analytical methods appears 
to be a potentially fruitful area of research. 

The purpose of the present paper is to make a preliminary analysis of heavy-ion 
transport theory with particular attention to the development of analytical methods well 
suited to numerical approximation without recourse to Monte Carlo methods (ref. 11). 
Since radiation protection is of concern, consideration will be given to evaluation of factors 
closely related to biological response (ref. 12). 

SYMBOLS 

atomic mass  of type j ion, amu *j 

E ion kinetic energy, MeV/amu 

fjk (E ,Er,6,G) probability density of type k projectile with energy E' and 
motion along 5' to produce type j ion with energy in dE 
about E and in d z  about E, (sr-MeV/amu)-l 

Gj(%,z,E) source of type j ions at with energy E anddirection E, 
(sr -cm3- MeV/amu) - 

m nucleon mass, amu 

ii( F) outward directed unit normal vector at point r' on bounding surface 

Pj(E) total survival probability of type j ion of energy E 

Rj (E) 

rjk(E,E',6,$) 

continuous slowing-down range of type j ion of energy E, cm 

double differential c ross  section for production of type j ions of 
energy E into direction 6 by type k ions of energy E' f rom 
direction 6, (cm-sr-MeV/amu)- 1 

sj(E) stopping power o r  linear energy transfer (LET) due to interaction of type j 
ion with orbital electrons of transport medium, MeV/cm 
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s,t two-parameter net defined over bounding surface 

X one-dimensional position vector, g/crn2 

4 

X position vector (see fig. l),  cm 

4 Xn component of ?t perpendicular to 6, cm 

- 
position vector defining point on boundary which is origin of vector connecting %,X 

boundary to along direction 6 (see fig. l), cm 

3 % t )  two-parameter vector function defining the bounding surface, cm 

vjk(E) multiplicity of type j ions produced by collision of type k ion of energy E 

Sj,Vj characteristic coordinates of type j ion, cm 

P projection of Z onto 5, cm 

j (E) macroscopic absorption c ross  section for type j ion of energy E, cm- 1 

standard deviation of momentum of type j ions produced in collision of Ojk 
type k ions, MeV/c 

differential f lux  of type j ions at directed toward 6 with 
+j(z,z,E) energy E, (cm2-sec-sr-MeV/amu) -1 

5 ion direction of motion 

Superscripts : 

P projectile 

T target 

Pr imes  indicate a variable of summation o r  integration. 
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TRANSPORT THEORY 

A heavy ion, after entering a region filled with ordinary matter, interacts with 
orbital electrons, causing ionization and excitation of the medium. Because of the large 
mass difference between the ion and these orbital electrons, only a small amount of the 
ion energy can be transferred in a collision with a single electron. As a result of the 
long range of the Coulomb force and the large percentage of the material volume occupied 
by electrons, the electron interactions can, to a good approximation, be treated as a con- 
tinuous slowing-down process over any finite path length. Although the energy lost by an 
ion over some fixed path length fluctuates about a mean value, this fluctuation amounts to 
no more than a few percent (refs, 13 and 14) and is of no importance in the study of space 
radiation (ref. 15). In the following, continuous slowing-down theory will be assumed 
throughout and the relevant quantity is the average energy loss  per unit path length, 
denoted by S.(E), where E is the ion energy and j denotes the ion type. 

J 
The mean free path for nuclear collisions is large (more than a centimeter); by com- 

parison, the mean free path for collision of the ion with electrons is small. Whereas 
collisions with electrons result only in a small transfer of energy compared with the total 
ion kinetic energy, the nuclear collision generally alters (loss of mass  and charge) the ion 
and the struck nucleus, with many secondary particles being produced. The secondary 
particles produced as fragments of the primary heavy ion will have longer ranges and 
free paths causing much greater penetration. As the secondaries undergo additional 
nuclear reactions, more secondaries, which penetrate deeper into the material, are pro- 
duced. The purpose here is to develop the theoretical understanding of the transport of 
such radiations in extended materials. 

The heavy-ion transport equations are derived by balancing the change in the ion 
flux as it crosses a small volume of material with the gains and losses  due to nuclear 
collision (ref. 11). The resulting equations for  a homogeneous material are given by 

S.(E) + Cj(E) $j (X,Z,E) 3 i a  
Aj aE J 

where @j(Z,6,E) is the flux of ions of type j with atomic mass  A. at with 
motion along 5 and energy E in units of MeV/amu, C.(E) is the corresponding 
macroscopic cross  section, S.(E) is the linear energy transfer (LET), and 

J 
J 

J 
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rjk(E,E',S2,S2') is the production c ross  section for type j ions with energy E and 
direction 6 by the collision of a type k ion of energy E' and direction E'. The 
te rm on the left side of equation (1) containing S.(E) is a result of the continuous 
slowing-down approximation, while the remaining terms of equation (1) are seen to be the 
usual Boltzmann terms. The solutions to equation (1) exist and are unique in any convex 
region for  which the inbound flux of each ion type is specified everywhere on the bounding 
surface. If the boundary is given as the loci of the two-parameter vector function y(s,t) 
f o r  which a generic point on the boundary is given by 
specified by requiring the solution of equation (1) to satisfy 

J 

r', then the boundary condition is 

for  each value of 5 such that 

where 3 (F) is the outward directed unit normal vector to the boundary surface at the 
point r' and Q is a specified boundary function. 

j 
Equation (l), with the boundary condition (eq. (2)), may be written as an inhomogen- 

eous integral equation. To do so requires inversion of the differential operator contained 
in brackets on the left-hand side of equation (1). As will be shown, there is a character-  
istic space in which the inversion is simplified. The transformation of equation (1) to 
this characteristic space will now be made. (See ref. 11 for a more detailed discussion.) 
Let the secondary particle source term on the right-hand side of equation (1) be denoted 
by Gj( Z,c ,E) ,  so that 

Multiplying equation (4) from the left by S.(E) results in 
J 

where 



and 

- 
G~ (z,E,E) = s~(E)  G~ ( Z,B,E) 

A set  of characteristic variables are found to be 

- xn = z - pi5 

and the new functions in this characteristic space are defined as 

When equation (5) is mapped into the space defined by the variables given by equa- 
tions (8) to (11) and the new functions given by equations (12) to (14), one obtains the s im- 
plified differential given by 

which can be formally solved. Equation (15) may be integrated using the appropriate 
integrating factor, resulting in 
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where a is any real number. If the flux that is, x . 0 .  [.,%,E)) is known at  some 

point q given by the set of values q .  = a, tj, s, and 5, then the flux at any other 77 

may be found by using equation (16). The value a will be chosen later to always corre-  
spond to the boundary T(s,t). Equation (16) may now be rewritten with the aid of equa- 
tions (8) to (14) as 

J J '  J 

j 
i 

j I 

The value a will now be chosen such that the second factor of the first te rm on 
the right-hand side of equation (17) corresponds to the value at the boundary. Hence, 
a is chosen such that 

The boundary point is shown in figure 1. The corresponding value of a is given by 

Using in equation (17) the variable transformations given by 

and 



so that 

and 

results in 

where 

Defining the total nuclear survival probability as 

results in 
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Equation (27) can be further reduced using equations (6) and (7) to 

where 

= R j - l P  - d +Rj(En 
E7 

Using the definition of G. (Z78,E) (eq. (4)) equation (28) results in 
3 

which is the integral equation of heavy-ion transport theory. 
mate solution of equation (30), or equivalently equation (l), with the boundary condition 
(eq. (2)) are considered next. 

Techniques for the approxi- 
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INTERACTION PARAMETERS 

The parameter appearing in equation (1) relating to interaction of ions with orbital 
electrons is the energy loss per unit path length, denoted by S.(E). For  the present, 
fluctuations about the mean will be ignored and the simplified approximation (see refs. 16 
to 18 for  discussion) 

J 

4 2  47re z1 
J 
2 NmB Sj(E) = 

mev 

will be used, where 

B = + Q(1) - Re@ ( 1 +- i2.j 

N, is the atom density of the material, zm is the material atomic number, I is the 
material adjusted ionization potential, me is the electron mass,  e is the electron 
charge, li is Planck's constant, v is the ion velocity, and z j  is the ion atomic num- 
ber.  Equations (31) to (33) apply at large ion velocities. A s  the ion slows, it tends to 
capture orbital electrons, which effectively reduces the ion charge. The effective ion 
charge z* will be taken as (ref. 16) 

j 

z? J J  = 2 . 1  - exp (-125 v ~ z ~ / 3 ) ]  (34) 

where v i s  the ion speed and c is the speed of light. In addition to orbital electron 
capture, the nuclear elastic scattering also becomes important at very low energies. 
the ion speed is sufficiently large, it is clear from equations (31) through (33) that 

If 
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where Sp(E) is the proton stopping power and z: is the effective proton charge. 
Empirically, it is found that equation (35) is reasonably accurate even at low ion speeds. 

in water) 
I Expressions (31) to (33) fail at low energies but the empirical expression (for energy loss 

Sp(E) = E O . ~ O ~ ( ~ ~ I ?  - 62833) (36) 

and equation (35) may be used f o r  energy E less than 243.8 keV/amu. 

The parameters in equations (1) and (30) which are least  known are those associated 
with the nuclear attenuation and fragmentation. If the elastic scattering of heavy ions is 
ignored to a first approximation, then C.(E) is the ion macroscopic absorption cross 
section for  the transport medium. The microscopic cross  sections from which C.(E) is 
determined are presented in reference 10. 

J 
J 

The fragmentation of the ion and target nuclei is represented by the quantities 
- D -  

rjk(E,E',S2,S2') which a re  composed of three functions as follows: 
t 

where v. (E') is the multiplicity of type j ions being produced by a collision of a 
type k ion of energy E' and fjk(E,E',S2,CZj is the probability density distribution for 
producing type j ions of energy E into direction 6 from the collision of a type k 
ion with energy E' moving in direction 6'. For an unpolarized source of ions and 
unpolarized targets,  the energy-angle distribution of reaction products may be taken as a 
function of the energies and cosine of the production angle with respect to the incident 
beam direction. The secondary multiplicities v. (E) and secondary energy-angle dis- 

Jk 
tributions are the major  unknowns in ion transport theory. 

Until recently, information on the multiplicity v. (E) was  obtained through exper- Jk 
iments with galactic cosmic rays as an ion source and the fragmentation of the ions on 
target nuclei was observed in nuclear emulsion (ref. 19). Such data are mainly limited 
by not knowing the identity of the initial or secondary ions precisely and by relatively low 
counting rates of each ion type. Recent heavy-ion acceleration by machine makes it pos- 
sible to reduce the uncertainty since large count ra tes  are possible with known ion types. 
In addition, the target nuclei in accelerator experiments can conveniectly be other than 
nuclear emulsion, and accurate detector techniques with modern electronic processing are 
greatly improving the experimental data base. In addition, the accelerator experiments 

Jk 0 0  
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are providing information on the spectral distribution f .  (E,E',a,Q') 
been available (ref. 20). 

which has not before 
Jk 

The spectral distribution function is found to consist of two t e rms  which describe 
the fragmentation of the projectile and the fragmentation of the struck nucleus as follows 
(refs. 2 1  and 22): 

where u p  and f p  depend only weakly on the target and v i  and f T  depend only 

weakly on the projectile. Whereas the average secondary velocities associated with f 
are nearly equal to the projectile velocity, the average velocities associated with f T  are 
near zero. Experimentally (refs. 20 to 22), i t  is observed that 

P 
Jk Jk jk 

(where 
and 

and 5' are the momenta per  unit mass  of j and k ions, respectively) 

where up and uT are related to the r m s  momentum spread of secondary products. 

These parameters depend only on the fragmenting nucleus. It was first suggested by 
Feshbach and Huang (ref. 7) that the parameters  up and "5 depend on the average 

square momentum of the nuclear fragments as allowed by Fermi  motion. A precise form- 
ulation of these ideas in t e rms  of a statistical model was obtained by Goldhaber (ref. 8). 

jk jk 

jk 
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APPROXIMATION PROCEDURES 

Neglect of Target Fragmentation 

3 

1 - -  
Employing equations (37) to (40) in the evaluation of G.( x,O,E) of equation (4) 

results in 

1 where, as before, the superscripts P and T refer to fragmentation of the projectile 
and target, respectively. The target term is seen to be 

1 which is negligibly small for  

Thus, for  calculating the flux at high energy, 

Space Radiations 

A convenient property of space radiations is that they are nearly isotropic. This 
fact, coupled with the forward peaked spectral distribution, leads to substantial reductions 
in the source t e rm as follows: 

(4 5) 
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Assuming that @k(%,z',E') is a slowly varying function of 8, one may seek an expan- 
sion about the sharply peaked maximum of the exponential function. Such an expansion is 
made by letting 

@ 2' = 5 + (cos e - 115 + sin e z 

where 

COS e = si - 5 

with which the flux may be expanded as 

- 
@k(z,zt ,E ' )  = @k(x,z,E') + @ k ( % , E , E j  ' k O S  e - 1)6 4- Sin 6 5  @ 3 + . . .  

Substituting equation (49) into equation (45) and simplifying results in 

The leading te rm of equation (50) is clearly a good approximation to the source term 
whenever 

(47) 

(48) 

(49) 

Note that the leading te rm is equivalent to assuming that secondary ions a re  produced 
only in the direction of motion of the primary ions. In the case of space radiations which 
a r e  nearly isotropic, relation (51) is easily satisfied and neglect of higher-order t e r m s  

14 



in equation (50) results in the usual straightahead approximation. If the radiation is 
highly anisotropic, then relation (51) is not likely to apply. Such behavior was  discovered 
empirically by Alsmiller et al. (refs. 23 and 24) for the case of proton transport. 

Velocity Conserving Interaction 

It has been customary in cosmic ion transport studies (ref. 1) to assume that the 
fragment velocities a re  equal to the fragmenting ion velocity prior to collision. Derived 
beiow is the order  of approximation resulting from such an assumption. If it is assumed 
that the projectile energy E' is equal to the secondary energy plus a positive quantity E 

E ' = E + E  (52) 

and that E will  contribute to equation (50) only over a small range above zero energy, 
substituting equation (52) into equation (50) and expanding the integrand resul ts  in 

f 

Since da <c 1 at those energies for  which most nuclear reactions occur, it is 
mE 

clear that the assumption of velocity conservation is inferior to a straightahead approxi- 
mation but may be adequate for space radiations where the variation of @k(z,fi,E) with 
energy is sufficiently smooth. That is, 

Decoupling of Target and Projectile Flux - 
Equation (1) with the use of equation (41) may be rewritten as 

(54) 

15 
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where the differential operator is given by 

and the integral operator (Fjk = FZ + FF' is given by 

F. @ (Z,g,E) = dE' dErrjk(E,E',SZ,S2') - 4  @k(?,E1,E') 
1k k 

Defining the flux as a sum of two t e rms  

Gj(Z,g,E) = @;(?,$,E) + @;(%,$,E) 

allows the following separation: 

(55) 

(57) 

A s  noted in connection with equations (42) through (44), the source te rm on the right-hand 
side of equation (59) is small at high energies and one may assume 

for  E >> 

compared 
(o$)2/m. A s  a result  of equation (60) and the fact that the ion range is small  
with its mean free path at low energy, one obtains 
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The advantage of this separation is that once equation (61) is solved by whatever means 
necessary, then equation (62) can be solved in closed form. The solution of equation (62) 

must vanish on the bound- 
ary, so that 

1 is accomplished by noting that the inwardly directed flux +T j 

where E is given by equation (29). Y 
Using equations (38) and (40) in equation (63) yields 

where 

and uT has been assumed to be a slowly varying function of projectile type k and pro- 
jectile energy E. If the range of secondary type j ions is small compared with their 
mean free path lengths and the mean f ree  paths of the fragmenting parent ions fk, that is, 

jk 

then the integral of equation (64) may be simplified as 
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which may be reduced into t e rms  of known functions. Thus, 

in terms of the incomplete gamma function. It may also be shown that equation (68) is 
equivalent to 

At points sufficiently removed from the boundary such that 

equation (69) may be reduced to 

The solution of equation (61) will now be further examined. 

Back-Substitution and Perturbation Theory 

One approach to the solution of equation (61) resul ts  f rom the fact that the multiply 
charged ions tend to be destroyed in nuclear reactions. Thus, 

( j  2 k) (72) 

This means that there is a maximum j such that 
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B J$Jp ( W,Z,E) = o (73) 

1 

where J is the largest  j. Furthermore, 

and, in general, 

N-1 

k= 1 

for  N < J - 1. Note that equations (73) to (75) constitute solvable problems. The singly 
charged ions satisfy 

k=2 

which, unlike equations (73) to (75), is an integral-differential equation, which is difficult 
to solve directly. Equation (76) is solvable by perturbation theory and the resultant 
series is known to converge rapidly for  intermediate and low energies (ref. 11). It is to 
be noted that equations (73) to (75) a re  also obtained from perturbation theory as applied 
to equation (61) at the outset. Thus, the perturbation ser ies  is expected to converge 
after the first J plus a few terms. 

When J is large, the number of t e rms  entering the summations in equations (75) 
and (76) may lead to a lengthy computational problem. An estimate of the number of 
t e r m s  required to adequately approximate the solution of equation (75) would be useful 
before a commitment to the development of computer programs to evaluate the series is 
made. 
determine the rate of convergence of the perturbation ser ies .  

For this purpose, a study of a simplified but realistic model is andertaken to 

MODEL CALCULATION 

At sufficiently high energies, the energy loss can be neglected over many mean free 
Paths of the incident ion. Assuming the straightahead approximation is valid and that all 
secondary fragments have the same velocity as the fragmenting parent nucleus leads to 
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a particularly simple one-dimensional form of the theory. Namely, equation (1) becomes 

which may likewise be written as 

which is equivalent to equation (30). For the present example, a simple form for 
and v p  which is reasonably realistic is assumed. Namely, we take 

c k  

Jk 

Zk = Z0k213 (79) 

and 

where j and k are to be interpreted as ion charge numbers and u is the unit step 
function; it is seen that equation (80) conserves charge in the interaction. Implicit in 
equations (79) and (80) is the neglect of target fragmentation products. 

Equation (78) was solved numerically using successive interations and numerical 
quadrature. The zeroth-order approximation was taken as 

and the higher-order corrections were added by substitution into the right-hand side of 
equation (78), giving 

for i = 0, 1, 2, . . . . The Z0 parameter in equation (79) was chosen to correspond to 
air and the boundary condition was taken as 

20 



corresponding to an iron group nucleus incident on the Earth's atmosphere. The iteration 
procedure converged over the first 60 g/cm2 in six iterations and numerical e r r o r s  were 
held to within 10 percent. Thus, it appears that perturbation theory may well result  in a 
practical calculation procedure for  heavy-ion transport for  most applications. 

tion (82) is shown in figure 2, along with the integrated ion flux as calculated with only 
the first-order correction (that is, i = 0 in eq. (82) only). It is seen that the first-order 
result is far from accurate over most of the regions of interest. Although first-order 
theory is inadequate in this respect, the predicted average charge of the beam as it passes 
through the air is no worse than a factor of two off, as shown in figure 3. Although the 
average charge is approximately correct,  96 percent of the initial charge of 25 is con- 
tained in higher-order t e rms  at 60 g/cm2. The importance of higher-order te rms  is 
shown again in connectiori with the calculation of secondary particle dose in figure 4. 
Clearly, doses calculated on the basis of first-order theory contain large e r r o r s  for 
depths beyond several  g/cm2 of material. 

I 

The integrated ion flux as calculated with the iteration procedure indicated in equa- 

The dose contribution from various charge components is shown in figure 5 at sev- 
eral depths. Also shown for comparison a r e  the results of f i rs t -order  theory for  the two 
lowest values of depth. Most conspicuous is that the maximum contribution comes from 
a broad range of charges above z = 3. This is even true at rather great depths such as 
the 59.2 g/cm2 curve in the figure, which represents nearly four mean free path lengths 
of the primary ion beam. 

The resul ts  in figure 5 are of importance in the evaluation of the biological effects 
since it is well known that heavy ions can bring about biological effects not observed with 
any other known types of radiation. The fact that secondary ions formed from the frag- 
mentation of a single larger ion have greater penetrating power and may be even more 
damaging biologically as a result  of saturation effects points out the need for  a careful 
evaluation of transport effects on biological systems shielded f rom high-energy heavy-ion 
radiation. Such an evaluation would also be important with respect to evaluation of doses 
in connection with radiotherapy (especially in surrounding healthy tissues). 

Aside from the damaging effects of secondary projectile fragments, the nuclear 
stars formed by fragmenting target nuclei will sometimes be of major importance. In 
this connection, the collision density is of importance as shown in figure 6. Again it 
is seen that a first-order calculation does not produce the required accuracy for most 
applications. 
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CONCLUDING REMARKS 

The fundamental equations of heavy-ion transport a r e  presented both as a set of 
integral/partial-differential equations and as a coupled set of inhomogeneous integral 
equations. The basic interaction parameters are discussed and simple approximations 
based on experimental observations are given. On the basis of these interaction param- 
eters ,  simplifications of the fundamental transport equations are discussed. An iterative 
method is proposed to solve the inhomogeneous integral equations for  which rapid conver- 
gence is obtained in a transport model which neglects ionization energy loss, assumes 
forward secondary particle production, and assumes the secondary particle velocity is 
equal to the fragmenting ions velocity. Although a first-order perturbation theory is 
generally insufficient to represent the transport process, six correction te rms  provide 
sufficient accuracy f o r  the iron group ions for  most depth ranges of interest (560 g/cm2). 
It is found in these model calculations that the secondary multiply charged ions can pene- 
trate well beyond the depths obtainable by the primary ion. This fact will be most impor- 
tant in connection with space and high-altitude aircraft  shielding and radiotherapy. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
November 24, 1976 
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Figure 1.- Relation of boundary and vector quantities required 
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Figure 2.- Integrated ion f lux as result of normally incident iron group 
ion flux on top of Earth's atmosphere. 
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Figure 3.- Average charge of ions produced in Earth's atmosphere by 
normally incident high-energy iron group ion integrated flux. 
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Figure 4.- Dose in Earth's atmosphere due to normally incident iron group 
integrated flux (l/cm2) of high energy. 
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Figure 5.- Dose contribution from various ion types in Earth's atmosphere 
due to normally incident high-energy iron group ion integrated f l u x  (l/cm2). 
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Figure 6.- Density of nuclear reactions with air nuclei produced by normally 
incident iron group ion, integrated flux (l/cm2) and all secondary fragments. 
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